免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300
    欧美激情一二三区| 亚洲在线视频网站| 国产91综合网| 国产精品美女久久久久高潮| 成人午夜免费av| 亚洲天堂2016| 欧美日韩午夜精品| 男人的天堂久久精品| 精品三级在线看| 成人性视频网站| 一区二区三区中文免费| 欧美日韩精品综合在线| 另类小说欧美激情| 久久久久九九视频| 99久久精品国产精品久久| 一二三四区精品视频| 欧美一区二区三区婷婷月色| 精品一区二区三区在线播放| 久久久91精品国产一区二区精品| 不卡视频一二三四| 亚洲国产一区视频| 精品日韩欧美一区二区| 成人小视频免费在线观看| 亚洲黄色av一区| 欧美一激情一区二区三区| 蜜臀av一区二区三区| 国产亚洲视频系列| 色久优优欧美色久优优| 蜜桃av一区二区三区电影| 国产日韩欧美a| 在线亚洲免费视频| 久久99热国产| 18欧美亚洲精品| 制服丝袜亚洲播放| 大陆成人av片| 丝袜美腿一区二区三区| 久久久精品一品道一区| 在线观看免费视频综合| 久久成人免费日本黄色| 中文字幕制服丝袜成人av| 欧美日韩国产免费| 粉嫩一区二区三区在线看| 亚洲黄色小视频| 久久一区二区视频| 在线视频国内一区二区| 国产在线不卡一卡二卡三卡四卡| 亚洲欧美日韩一区二区三区在线观看 | 美腿丝袜亚洲三区| 日韩理论片中文av| 欧美岛国在线观看| 一本大道av一区二区在线播放| 美女国产一区二区| 有码一区二区三区| 久久日韩精品一区二区五区| 欧美自拍偷拍一区| 国产成人亚洲综合a∨猫咪| 亚洲午夜久久久久久久久电影院 | 欧美日韩电影在线播放| 国产成人精品免费在线| 亚洲电影在线免费观看| 国产精品免费aⅴ片在线观看| 91精品国产综合久久精品app| eeuss鲁片一区二区三区在线观看 eeuss鲁片一区二区三区在线看 | 欧美日韩一二三| 成人激情动漫在线观看| 男女男精品视频网| 亚洲精品乱码久久久久久日本蜜臀| 精品福利av导航| 欧美区一区二区三区| 91色|porny| 国产福利一区二区三区视频| 首页综合国产亚洲丝袜| 亚洲免费看黄网站| 欧美国产激情一区二区三区蜜月| 日韩欧美的一区| 欧美视频中文一区二区三区在线观看| 成人黄色av网站在线| 久草中文综合在线| 日韩精品91亚洲二区在线观看 | 久久国产人妖系列| 亚洲bt欧美bt精品| 中文字幕日韩一区二区| 国产日韩欧美不卡在线| 精品国产污污免费网站入口| 欧美精品v国产精品v日韩精品 | 91久久精品网| aaa欧美大片| 成人妖精视频yjsp地址| 国产麻豆视频一区二区| 久久国产精品无码网站| 日日欢夜夜爽一区| 亚洲成人你懂的| 一区二区三区在线播| 国产精品久久久久久久久动漫| 久久影院午夜论| 26uuu国产电影一区二区| 日韩小视频在线观看专区| 777精品伊人久久久久大香线蕉| 在线免费一区三区| 色8久久精品久久久久久蜜| aaa亚洲精品一二三区| 成人午夜碰碰视频| 成人伦理片在线| 丰满少妇在线播放bd日韩电影| 国产精品亚洲成人| 国产毛片一区二区| 国产精品一二三区| 国产成人亚洲精品青草天美 | 色综合一个色综合亚洲| 色综合色狠狠综合色| 99久久精品免费看国产免费软件| 成人av先锋影音| av综合在线播放| 99视频超级精品| 91伊人久久大香线蕉| 成人禁用看黄a在线| caoporen国产精品视频| 99国产精品久| 91久久香蕉国产日韩欧美9色| 日本乱人伦一区| 欧美日韩国产经典色站一区二区三区 | 亚洲视频免费在线观看| 亚洲精品欧美二区三区中文字幕| 亚洲欧美日韩国产另类专区| 一区二区三区在线视频观看 | 色吧成人激情小说| 欧美三级日韩三级| 欧美电影一区二区| 884aa四虎影成人精品一区| 日韩午夜电影在线观看| 久久综合精品国产一区二区三区 | 国产一区二区三区在线看麻豆| 国产伦精品一区二区三区视频青涩| 国产精品亚洲专一区二区三区 | 中文字幕免费观看一区| 亚洲欧洲日韩综合一区二区| 亚洲精品成人a在线观看| 偷偷要91色婷婷| 麻豆视频一区二区| 国产黄人亚洲片| 99久久99久久综合| 欧美日韩在线不卡| 欧美成人三级在线| 国产精品久久久久久久久免费樱桃 | 91在线精品一区二区三区| 欧美综合亚洲图片综合区| 欧美一区二区三区电影| 国产午夜亚洲精品羞羞网站| 日韩一区在线免费观看| 亚洲成国产人片在线观看| 久久国产精品区| 成人av在线一区二区| 欧美天堂亚洲电影院在线播放| 日韩欧美国产成人一区二区| 中文字幕+乱码+中文字幕一区| 樱花影视一区二区| 免费在线视频一区| 成人免费视频一区| 欧美日韩在线不卡| 久久久www成人免费无遮挡大片| 自拍偷拍国产精品| 奇米影视在线99精品| 成人性生交大合| 51午夜精品国产| 国产精品无人区| 手机精品视频在线观看| 国产aⅴ综合色| 欧美日韩免费观看一区二区三区| 久久一区二区视频| 亚洲一区二区三区四区中文字幕| 久久97超碰色| 色999日韩国产欧美一区二区| 欧美va在线播放| 一区二区三区在线观看视频| 激情综合五月天| 91福利在线导航| 欧美精品一区二区在线播放| 亚洲男帅同性gay1069| 久久电影网站中文字幕| 色欧美88888久久久久久影院| 精品久久久久久久久久久久包黑料 | 一区二区三区四区亚洲| 狠狠色丁香婷综合久久| 在线国产亚洲欧美| 国产日韩三级在线| 日本亚洲欧美天堂免费| aaa欧美大片| 精品对白一区国产伦| 亚洲高清中文字幕| 成人动漫一区二区在线| 欧美大片拔萝卜| 亚洲一区二区精品3399| 成人久久视频在线观看| 日韩欧美一区二区免费| 亚洲影视在线播放| 成人av在线播放网址| 欧美变态tickling挠脚心| 亚洲国产精品一区二区www在线| 国产91综合网| 精品久久一区二区三区|