免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300

代寫COMP528、代做c/c++,Python程序語言

時間:2024-07-27  來源:  作者: 我要糾錯



University of Liverpool Assignment 1 Resit COMP528
In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman
Problem. This document explains the operations in detail, so you do not need previous
knowledge. You are encouraged to begin work on this as soon as possible to avoid the queue
times on Barkla closer to the deadline. We would be happy to clarify anything you do not
understand in this report.
1 The Travelling Salesman Problem (TSP)
The travelling salesman problem is a problem that seeks to answer the following question:
‘Given a list of vertices and the distances between each pair of vertices, what is the shortest
possible route that visits each vertex exactly once and returns to the origin vertex?’.
(a) A fully connected graph
(b) The shortest route around all vertices
Figure 1: An example of the travelling salesman problem
The travelling salesman problem is an NP-hard problem, that meaning an exact solution
cannot be solved in polynomial time. However, there are polynomial solutions that can
be used which give an approximation of the shortest route between all vertices. In this
assignment you are asked to implement 2 of these.
1.1 Terminology
We will call each point on the graph the vertex. There are 6 vertices in Figure 1.
We will call each connection between vertices the edge. There are 15 edges in Figure 1.
We will call two vertices connected if they have an edge between them.
The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is
(0, 2, 4, 5, 3, 1, 0). Note the tour always starts and ends at the origin vertex.
A partial tour is a tour that has not yet visited all the vertices.
2023-2024 1University of Liverpool Assignment 1 Resit COMP528
2 The solutions
2.1 Preparation of Solution
You are given a number of coordinate ffles with this format:
x, y
4.81263062736921, 8.34719930253777
2.90156816804616, 0.39593575612759
1.13649642931556, 2.27359458630845
4.49079099682118, 2.97491204443206
9.84251616851393, 9.10783427307047
Figure 2: Format of a coord ffle
Each line is a coordinate for a vertex, with the x and y coordinate being separated by a
comma. You will need to convert this into a distance matrix.
0.000000 8.177698 7.099481 5.381919 5.087073
8.177698 0.000000 2.577029 3.029315 11.138848
7.099481 2.577029 0.000000 3.426826 11.068045
5.381919 3.029315 3.426826 0.000000 8.139637
5.087073 11.138848 11.068045 8.139637 0.000000
Figure 3: A distance matrix for Figure 2
To convert the coordinates to a distance matrix, you will need make use of the euclidean
distance formula.
d =
p
(xi − xj )
2 + (yi − yj )
2
Figure 4: The euclidean distance formula
Where: d is the distance between 2 vertices vi and vj
, xi and yi are the coordinates of the
vertex vi
, and xj and yj are the coordinates of the vertex vj
.
2023-2024 2University of Liverpool Assignment 1 Resit COMP528
2.2 Smallest Sum Insertion
The smallest sum insertion algorithm starts the tour with the vertex with the lowest index.
In this case that is vertex 0. Each step, it selects a currently unvisited vertex where the
total edge cost to all the vertices in the partial tour is minimal. It then inserts it between
two connected vertices in the partial tour where the cost of inserting it between those two
connected vertices is minimal.
These steps can be followed to implement the smallest sum insertion algorithm. Assume
that the indices i, j, k etc; are vertex labels unless stated otherwise. In a tiebreak situation,
always pick the lowest index(indices).
1. Start off with a vertex vi.
4
Figure 5: Step 1 of Smallest Sum Insertion
2. Find a vertex vj such that
Pt=Length(partialtour)
t=0
dist(vt
, vj ) is minimal.
Figure 6: Step 2 of Smallest Sum Insertion
3. Insert vj between two connected vertices in the partial tour vn and vn+1, where n is a
position in the partial tour, such that dist(vn, vj ) + dist(vn+1, vj ) - dist(vn, vn+1) is
minimal.
4. Repeat steps 2 and 3 until all of the vertices have been visited.
2023-2024 3University of Liverpool Assignment 1 Resit COMP528
Figure 7: Step 3 of Smallest Sum Insertion
4
(a) Select the vertex
(b) Insert the vertex
Figure 8: Step 4 of Smallest Sum Insertion
(b) Insert the vertex
Figure 9: Step 5 of Smallest Sum Insertion
2023-2024 4University of Liverpool Assignment 1 Resit COMP528
4
(b) Insert the vertex
Figure 10: Step 6 of Smallest Sum Insertion
(a) Select the vertex
(b) Insert the vertex
Figure 11: Step 7 of Smallest Sum Insertion
2023-2024 5University of Liverpool Assignment 1 Resit COMP528
2.3 MinMax Insertion
The minmax insertion algorithm starts the tour with the vertex with the lowest index. In this
case that is vertex 0. Each step, it selects a currently unvisited vertex where the largest edge
to a vertex in the partial tour is minimal. It then inserts it between two connected vertices
in the partial tour where the cost of inserting it between those two connected vertices is
minimal.
These steps can be followed to implement the minmax insertion algorithm. Assume that the
indices i, j, k etc; are vertex labels unless stated otherwise. In a tiebreak situation, always
pick the lowest index(indices).
1. Start off with a vertex vi.
Figure 12: Step 1 of Minmax Insertion
2. Find a vertex vj such that M ax(dist(vt
, vj )) is minimal, where t is the list of elements
in the tour.
Figure 13: Step 2 of Minmax Insertion
3. Insert vj between two connected vertices in the partial tour vn and vn+1, where n is a
position in the partial tour, such that dist(vn, vj ) + dist(vn+1, vj ) - dist(vn, vn+1) is
minimal.
4. Repeat steps 2 and 3 until all of the vertices have been visited.
2023-2024 6University of Liverpool Assignment 1 Resit COMP528
Figure 14: Step 3 of Minmax Insertion
(a) Select the vertex
4
(b) Insert the vertex
Figure 15: Step 4 of Minmax Insertion
(a) Select the vertex
(b) Insert the vertex
Figure 16: Step 5 of Minmax Insertion
2023-2024 7University of Liverpool Assignment 1 Resit COMP528
(a) Select the vertex
4
(b) Insert the vertex
Figure 17: Step 6 of Minmax Insertion
(b) Insert the vertex
Figure 18: Step 7 of Minmax Insertion
2023-2024 8University of Liverpool Assignment 1 Resit COMP528
3 Running your programs
Your program should be able to be ran like so:
$ ./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >
Therefore, your program should accept a coordinate file, and an output file as arguments.
Note that C considers the first argument as the program executable. Both implementations
should read a coordinate file, run either smallest sum insertion or MinMax insertion, and
write the tour to the output file.
3.1 Provided Code
You are provided with the file coordReader.c, which you will need to include this file when
compiling your programs.
1. readNumOfCoords(): This function takes a filename as a parameter and returns the
number of coordinates in the given file as an integer.
2. readCoords(): This function takes the filename and the number of coordinates as
parameters, and returns the coordinates from a file and stores it in a two-dimensional
array of doubles, where coords[i][0] is the x coordinate for the ith coordinate, and
coords[i][1] is the y coordinate for the ith coordinate.
3. writeTourToFile(): This function takes the tour, the tour length, and the output
filename as parameters, and writes the tour to the given file.
4 Instructions
• Implement a serial solution for the smallest sum insertion and the MinMax insertion.
Name these: ssInsertion.c, mmInsertion.c.
• Implement a parallel solution, using OpenMP,for the smallest sum insertion and the
MinMax insertion algorithms. Name these: ompssInsertion.c, ompmmInsertion.c.
• Create a Makefile and call it ”Makefile” which performs as the list states below. Without
the Makefile, your code will not grade on CodeGrade.
– make ssi compiles ssInsertion.c and coordReader.c into ssi.exe with the GNU
compiler
– make mmi compiles mmInsertion.c and coordReader.c into mmi.exe with the
GNU compiler
2023-2024 9University of Liverpool Assignment 1 Resit COMP528
– make ssomp compiles ompssInsertion.c and coordReader.c into ssomp.exe with
the GNU compiler
– make mmomp compiles ompmmInsertion.c and coordReader.c into mmomp.exe
with the GNU compiler
– make issomp compiles ompssInsertion.c and coordReader.c into issomp.exe with
the Intel compiler
– make immomp compiles ompmmInsertion.c and coordReader.c into immomp.exe
the Intel compiler
• Test each of your parallel solutions using 1, 2, 4, 8, 16, and 32 threads, recording
the time it takes to solve each one. Record the start time after you read from the
coordinates file, and the end time before you write to the output file. Do all testing
with the large data file.
• Plot a speedup plot with the speedup on the y-axis and the number of threads on the
x-axis for each parallel solution.
• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of
threads on the x-axis for each parallel solution.
• Write a report that, for each solution, using no more than 1 page per solution,
describes: your serial version, and your parallelisation strategy.
• In your report, include: the speedup and parallel efficiency plots, how you conducted
each measurement and calculation to plot these, and screenshots of you compiling and
running your program. These do not contribute to the page limit.
• Your final submission should be uploaded onto CodeGrade. The files you
upload should be:
1. Makefile
2. ssInsertion.c
3. mmInsertion.c
4. ompssInsertion.c
5. ompmmInsertion.c
6. report.pdf
7. The slurm script you used to run your code on Barkla.
2023-2024 10University of Liverpool Assignment 1 Resit COMP528
5 Hints
You can also parallelise the conversion of the coordinates to the distance matrix. When
declaring arrays, it’s better to use dynamic memory allocation. You can do this by:
int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;
For a 2-D array:
int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;
for ( int i = 0 ; i < numOfElements ; i ++){
twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;
}
5.1 MakeFile
You are instructed to use a MakeFile to compile the code in any way you like. An example
of how to use a MakeFile can be used here:
{make command } : { t a r g e t f i l e s }
{compile command}
s s i : s s I n s e r t i o n . c coordReader . c
gcc s s I n s e r t i o n . c coordReader . c −o s s i . exe −lm
Now, on the command line, if you type ‘make ssi‘, the compile command is automatically
executed. It is worth noting, the compile command must be indented. The target files are
the files that must be present for the make command to execute.
This command may work for you and it may not. The point is to allow you to compile
however you like. If you want to declare the iterator in a for loop, you would have to add the
compiler flag −std=c99. −fopenmp is for the GNU compiler and −qopenmp is for the
Intel Compiler. If you find that the MakeFile is not working, please get in contact as soon
as possible.
Contact: h.j.forbes@liverpool.ac.uk
2023-2024 11University of Liverpool Assignment 1 Resit COMP528
6 Marking scheme
1 Code that compiles without errors or warnings 15%
2 Same numerical results for test cases (tested on CodeGrade) 20%
3 Speedup plot 10%
4 Parallel Efficiency Plot 10%
5 Parallel efficiency up to 32 threads (tests on Barkla yields good efficiency
for 1 Rank with 1, 2, 4, 8, 16, 32 OMP threads)
15%
6 Speed of program (tests on Barkla yields good runtime for 1, 2, 4, 8, 16,
32 ranks with 1 OMP thread)
10%
7 Clean code and comments 10%
8 Report 10%
Table 1: Marking scheme
The purpose of this assessment is to develop your skills in analysing numerical programs and
developing parallel programs using OpenMP. This assessment accounts for 40% of your final
mark, however as it is a resit you will be capped at 50% unless otherwise stated by the Student
Experience Team. Your work will be submitted to automatic plagiarism/collusion detection
systems, and those exceeding a threshold will be reported to the Academic Integrity Officer for
investigation regarding adhesion to the university’s policy https://www.liverpool.ac.uk/
media/livacuk/tqsd/code-of-practice-on-assessment/appendix_L_cop_assess.pdf.
7 Deadline
The deadline is 23:59 GMT Friday the 2nd of August 2024. https://www.liverp
ool.ac.uk/aqsd/academic-codes-of-practice/code-of-practice-on-assessment/
2023-2024 12

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:CIT 593代做、代寫Java/c++語言編程
  • 下一篇:代寫COMP4337、代做Python編程設計
  • 代做IERG 4080、代寫Python程序語言
  • CS202代做、代寫Java/Python程序語言
  • 代做SEHH2239、Python程序語言代寫
  • COMP3334代做、代寫Python程序語言
  • 代寫COMP9021、代做Python程序語言
  • 昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300
    欧美精品xxxxbbbb| 亚洲蜜臀av乱码久久精品| 国产精品 日产精品 欧美精品| 精品av久久707| 国产精品自拍毛片| 国产精品欧美久久久久无广告| 99久久综合色| 亚洲线精品一区二区三区| 欧美日韩不卡一区| 蜜臂av日日欢夜夜爽一区| 精品sm捆绑视频| 成人动漫一区二区三区| 亚洲免费大片在线观看| 欧美另类z0zxhd电影| 狠狠色狠狠色综合| 中文av一区特黄| 欧美亚洲丝袜传媒另类| 免费看日韩精品| 国产欧美日韩在线| 日本道免费精品一区二区三区| 午夜精品一区在线观看| www一区二区| av资源网一区| 丝袜国产日韩另类美女| 2020国产精品自拍| 色综合久久天天| 日本中文字幕不卡| 欧美激情在线免费观看| 色国产精品一区在线观看| 蜜臀av性久久久久蜜臀av麻豆| 国产日韩精品视频一区| 在线免费观看日本欧美| 久久狠狠亚洲综合| 亚洲欧洲美洲综合色网| 欧美疯狂性受xxxxx喷水图片| 国产一区二区三区久久久| 亚洲免费av高清| 欧美成人福利视频| 97aⅴ精品视频一二三区| 日韩和的一区二区| 国产情人综合久久777777| 欧美性生活影院| 国产大片一区二区| 亚洲成av人片观看| 国产欧美日韩综合精品一区二区| 欧美色区777第一页| 国产精品一区在线| 亚洲电影你懂得| 亚洲国产成人自拍| 91精品国产综合久久精品麻豆| 国产99精品视频| 石原莉奈在线亚洲三区| 国产精品美女久久久久久久网站| 欧美二区在线观看| 99精品视频在线播放观看| 蜜臀91精品一区二区三区 | 欧美久久婷婷综合色| 粉嫩av一区二区三区在线播放| 丝袜亚洲精品中文字幕一区| 国产精品黄色在线观看| 日韩你懂的电影在线观看| 色婷婷国产精品| 国产91精品在线观看| 人妖欧美一区二区| 玉足女爽爽91| 中文字幕第一区| 日韩精品影音先锋| 欧美午夜精品免费| 99视频在线精品| 国产黄人亚洲片| 免费观看在线综合色| 亚洲一区二区三区四区在线观看| 欧美国产精品中文字幕| 精品少妇一区二区三区免费观看| 欧美性猛交xxxx乱大交退制版| yourporn久久国产精品| 国产九九视频一区二区三区| 日韩av不卡在线观看| 亚洲综合免费观看高清完整版在线| 国产精品天干天干在线综合| 久久亚洲精精品中文字幕早川悠里 | 91论坛在线播放| 国产91精品精华液一区二区三区| 麻豆久久久久久| 日本怡春院一区二区| 亚洲制服欧美中文字幕中文字幕| 国产精品久久久久久户外露出 | 尤物视频一区二区| 中文子幕无线码一区tr| 久久影院午夜片一区| 欧美一区二区三区电影| 欧美老肥妇做.爰bbww视频| 色婷婷综合久久| 99久久99久久免费精品蜜臀| 成人午夜视频在线| 国产成人精品一区二| 国内外精品视频| 九九久久精品视频| 免费成人美女在线观看.| 首页综合国产亚洲丝袜| 亚洲成人免费视| 亚洲国产欧美在线| 亚洲国产精品麻豆| 亚洲一区欧美一区| 一区二区成人在线视频| 一区二区在线观看视频在线观看| 亚洲欧美国产毛片在线| 亚洲日穴在线视频| 亚洲精品中文字幕乱码三区| 亚洲欧洲成人精品av97| 亚洲视频资源在线| 亚洲六月丁香色婷婷综合久久| 17c精品麻豆一区二区免费| 中文字幕在线不卡一区二区三区 | 亚洲成人动漫在线免费观看| 午夜精品福利一区二区三区蜜桃| 亚洲6080在线| 视频一区中文字幕国产| 热久久一区二区| 捆绑调教一区二区三区| 狠狠色丁香久久婷婷综合_中 | 国产日韩成人精品| 国产精品系列在线| 自拍偷拍欧美激情| 亚洲精品videosex极品| 亚洲成av人片观看| 奇米色一区二区| 精品无码三级在线观看视频| 国产一区91精品张津瑜| 成人精品免费视频| 91在线porny国产在线看| 色999日韩国产欧美一区二区| 欧美在线三级电影| 3d动漫精品啪啪| 久久综合狠狠综合| 国产精品视频yy9299一区| 亚洲视频小说图片| 亚洲一区av在线| 卡一卡二国产精品| 国产91综合一区在线观看| 91麻豆自制传媒国产之光| 欧美无人高清视频在线观看| 欧美一级高清大全免费观看| 久久精品日韩一区二区三区| 国产精品国产三级国产三级人妇| 一区二区欧美在线观看| 秋霞电影一区二区| 国产成人在线免费观看| 一本色道久久综合亚洲91| 欧美剧情片在线观看| 亚洲精品一区二区三区蜜桃下载 | 日本欧美大码aⅴ在线播放| 国产一区二区三区日韩| 91免费在线视频观看| 7777精品伊人久久久大香线蕉超级流畅 | av电影在线观看完整版一区二区| 欧美性xxxxx极品少妇| 日韩免费高清av| 综合网在线视频| 日本欧美久久久久免费播放网| 国产不卡在线播放| 欧美在线免费观看亚洲| 欧美精品一区二区三区一线天视频 | 91视频com| 日韩色视频在线观看| 国产精品久久久久一区| 婷婷成人激情在线网| 国产精品18久久久久久久网站| 在线亚洲欧美专区二区| 久久综合999| 亚洲综合清纯丝袜自拍| 国产一区免费电影| 色八戒一区二区三区| 精品国产伦一区二区三区观看体验| 综合久久给合久久狠狠狠97色| 蜜桃av一区二区| 色悠久久久久综合欧美99| 欧美mv日韩mv| 亚洲精品一二三区| 国产一区二区在线视频| 欧美色网一区二区| 中文幕一区二区三区久久蜜桃| 丝袜诱惑亚洲看片| 91在线一区二区三区| 欧美www视频| 亚洲自拍偷拍欧美| 国产成人免费高清| 制服丝袜亚洲精品中文字幕| 亚洲欧洲一区二区三区| 精品亚洲欧美一区| 欧美日韩精品一区二区天天拍小说| 国产喷白浆一区二区三区| 日韩精品一二区| 色av成人天堂桃色av| 欧美激情资源网| 麻豆精品在线播放| 欧美三级电影网站| 日韩理论电影院| 粉嫩在线一区二区三区视频| 日韩欧美国产午夜精品|