免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300

COMP 315 代做、代寫 java 語言編程

時間:2024-03-10  來源:  作者: 我要糾錯



1 Introduction
Assignment 1: Javascript
COMP 315: Cloud Computing for E-Commerce March 5, 2024
A common task in cloud computing is data cleaning, which is the process of taking an initial data set that may contain erroneous or incomplete data, and removing or fixing those elements before formatting the data in a suitable manner. In this assignment, you will be tested on your knowledge of JavaScript by implementing a set of functions that perform data cleaning operations on a dataset.
2 Ob jectives
By the end of this assignment, you will:
• Gain proficiency in using JavaScript for data manipulation.
• Be able to implement various data cleaning procedures, and understand the significance of them. • Have developed problem-solving skills through practical application.
3 Problem description
For this task, you have been provided with a raw dataset of user information. You must carry out the following series of operations:
• Set up a Javascript class in the manner described in Section 4.
• Convert the data into the appropriate format, as highlighted in Section 5
• Fix erroneous values where possible e.g. age being a typed value instead of a number, age being a real number instead of an integer, etc; as specified in Section 6.
• Produce functions that carry out the queries specified in Section 7.
 Data name Title
First name
Middle name Surname Date of birth Age
Email
Note
This value may be either: Mr, Mrs, Miss, Ms, Dr, or left blank.
Each individual must have one. The first character is capitalised and the rest are lower case, with the exception of the first character after a hyphen.
This may be left blank.
Each individual must have one.
This must be in the format of DD/MM/YYYY.
All data were collected on 26/02/2024, and the age values should reflect this.
The format should be [first name].[surname]@example.com. If two individuals have the same address then an ID is added to differentiate them eg john.smith1, john.smith2, etc
Table 1: The attributes that should be stored for each user
         1

4 Initial setup
Create a Javascript file called Data Processing.js. Create a class within that file called Data Processing. Write a function within that class called load CSV that takes in the filename of a csv file as an input, eg load CSV (”User Details”). The resulting data should be saved locally within the class as a global variable called raw user data. Write a function called format data, which will have no variables are a parameter. The functionality of this method is described in Section 5. Write a function called clean data, which will also have no parameters. The functionality of this method is similarly described in Section 6.
5 Format data
Within the function format data, the data stored within raw user data should be processed and output to a global variable called formatted user data. The data are initially provided in the CSV format, with the delimiter being the ’,’ character. The first column of the data is the title and full name of the user. The second and third columns are the date of birth, and age of the user, respectively. Finally, the fourth column is the email of the user. Ensure that the dataset is converted into the appropriate format, outlined in Table 1. This data should be saved in the JSON format (you may use any built in JavaScript method for this). The key for each of the values should be names shown in the ’Data name’ column, however converted to lower case with an underscore instead of a space character eg ’first name’.
6 Data cleaning
Within the function clean data, the data cleaning tasks should be carried out, loading the data stored in formatted user data. All of this code may be written within the clean data function, or may be handled by a series of functions that are called within this class. The latter option is generally considered better practice. Examine the data in order to determine which values are in the incorrect format or where values may be missing. If a value is in the incorrect format then it must be converted to be in the correct format. If a value is missing or incorrect, then an attempt should be made to fill in that data given the other values. The cleaned data should be saved into the global variable cleaned user data.
7 Queries
Often, once the data has been processed, we perform a series of data analysis tasks on the cleaned data. Each of these queries are outlined in Table 2. Write a function with the name given in the ’Function name’ column, that carries out the query given in the corresponding ’Query description’. The answer should be returned by the function, and not stored locally or globally.
 Function name
most common surname average age
youngest dr
most common month
Query description
What is the most common surname name?
What is the average age of the users, given the values stored in the ’age’ column? This should be a real number to 3 significant figures.
Return all of the information about the youngest individual in the dataset with the title Dr.
What is the most common month for individuals in the data set?
        percentage titles
 What percentage of the dataset has each of the titles? Return this in the form of an array, following the order specified in the ’Title’ row of Table 1. This should included the blank title, and the percentage should be rounded to the nearest integer using bankers rounding.
  percentage altered
 A number of values have been altered between formatted user data and cleaned user data. What percentage of values have been altered? This should be a real number to 3 significant figures.
  Table 2: The queries that should be carried out on the cleaned data
2

8 Marking
The marking will be carried out automatically using the CodeGrade marking platform. A series of unit tests will be ran, and the mark will correspond with how many of those unit tests were successfully executed. Your work will be submitted to an automatic plagiarism/collusion detection system, and those exceeding a threshold will be reported to the Academic Integrity Officer for investigation regarding adhesion to the university’s policy https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix L cop assess.pdf.
9 Deadline
The deadline is 23:59 GMT Friday the 22nd of March 2024. Late submissions will have the typical 5% penalty applied for each day late, up to 5 days. Submissions after this time will not be marked. https: //www.liverpool.ac.uk/aqsd/academic-codes-of-practice/code-of-practice-on-assessment/
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫 CSSE7030 Connect 4
  • 下一篇:代做ACS61012、代寫ACS61012 Machine Vision
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗(yàn)證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300
    在线亚洲精品福利网址导航| 久久美女高清视频| 天天影视涩香欲综合网| 欧美顶级少妇做爰| 人人爽香蕉精品| 精品久久久久久综合日本欧美| 九九在线精品视频| 国产网站一区二区| 99re视频这里只有精品| 亚洲国产人成综合网站| 欧美精品久久99久久在免费线| 日本成人超碰在线观看| 欧美一区二区三区性视频| 极品销魂美女一区二区三区| 国产午夜精品久久久久久免费视 | 成人午夜电影久久影院| 成人欧美一区二区三区在线播放| 日本久久一区二区三区| 日韩黄色在线观看| 久久夜色精品一区| 97aⅴ精品视频一二三区| 亚洲成av人片| 337p粉嫩大胆色噜噜噜噜亚洲| 成人sese在线| 亚洲一区国产视频| 欧美大片一区二区三区| 成人视屏免费看| 亚洲福利电影网| 久久综合狠狠综合| 色综合天天综合网国产成人综合天 | 成人黄色小视频| 亚洲与欧洲av电影| 欧美成人精品高清在线播放| 成人久久久精品乱码一区二区三区| 亚洲欧美日韩在线| 欧美一区二区三区在线视频| 国产成人免费视频网站| 亚洲综合成人网| 亚洲精品一区二区三区影院 | 日本丰满少妇一区二区三区| 奇米影视在线99精品| 中文字幕乱码一区二区免费| 欧美日韩黄视频| 国产**成人网毛片九色 | 亚洲欧美激情插| 日韩欧美卡一卡二| 91女厕偷拍女厕偷拍高清| 免费成人在线视频观看| 日韩一区在线播放| 日韩久久久久久| 色婷婷激情综合| 国产精品资源在线看| 亚洲一区成人在线| 国产蜜臀av在线一区二区三区| 欧美三级蜜桃2在线观看| 粉嫩在线一区二区三区视频| 视频一区在线播放| 国产精品久99| 26uuu精品一区二区| 欧美三级一区二区| 成人精品视频一区二区三区尤物| 日日摸夜夜添夜夜添亚洲女人| 亚洲欧洲在线观看av| 欧美大胆人体bbbb| 欧美日韩一区成人| 不卡的av电影在线观看| 精油按摩中文字幕久久| 亚洲国产你懂的| 国产精品传媒入口麻豆| 亚洲精品一线二线三线| 91麻豆精品国产91久久久使用方法| av电影一区二区| 国产乱码精品一区二区三区五月婷 | 国内久久婷婷综合| 天天影视涩香欲综合网| 亚洲精品成人少妇| 国产精品情趣视频| 久久久另类综合| 欧美一区二区视频在线观看| 在线观看免费亚洲| av成人动漫在线观看| 国产福利一区二区三区在线视频| 日韩高清欧美激情| 亚洲亚洲人成综合网络| 国产精品久久久久三级| 国产网红主播福利一区二区| 精品久久久久久综合日本欧美| 4438x成人网最大色成网站| 91高清视频在线| 97se亚洲国产综合在线| 成人激情小说网站| 粉嫩嫩av羞羞动漫久久久| 国内精品伊人久久久久av一坑| 蜜臀va亚洲va欧美va天堂| 午夜欧美视频在线观看| 亚洲综合清纯丝袜自拍| 亚洲欧美aⅴ...| 亚洲欧美在线另类| 亚洲欧洲成人av每日更新| 中文字幕免费在线观看视频一区| 久久免费精品国产久精品久久久久| 欧美一级爆毛片| 日韩色在线观看| 日韩一区二区三| 日韩视频中午一区| 日韩一区二区电影在线| 91精品国产乱码久久蜜臀| 在线播放欧美女士性生活| 欧美人与禽zozo性伦| 欧美日韩亚洲不卡| 欧美日韩卡一卡二| 欧美日韩国产123区| 欧美日韩电影一区| 3751色影院一区二区三区| 911精品国产一区二区在线| 7799精品视频| 日韩欧美国产综合| 精品免费国产二区三区| xnxx国产精品| 日本一区二区三级电影在线观看 | 亚洲男人电影天堂| 亚洲中国最大av网站| 亚洲电影一区二区三区| 视频一区视频二区中文| 日韩国产在线一| 久久av中文字幕片| 国产酒店精品激情| 成人国产亚洲欧美成人综合网| 99久久综合国产精品| 色综合久久综合中文综合网| 欧美在线视频日韩| 91精选在线观看| 精品久久国产字幕高潮| 国产免费成人在线视频| 中文字幕佐山爱一区二区免费| 亚洲精品欧美综合四区| 日韩中文字幕一区二区三区| 蜜桃传媒麻豆第一区在线观看| 国产一区久久久| 成人福利在线看| 在线中文字幕不卡| 91精品国产欧美一区二区成人| www亚洲一区| 成人欧美一区二区三区在线播放| 亚洲伊人色欲综合网| 日本中文字幕一区| 国产成人亚洲综合a∨婷婷| 91亚洲精品乱码久久久久久蜜桃| 在线观看国产一区二区| 日韩欧美国产不卡| 欧美韩国一区二区| 亚洲在线视频网站| 国产资源在线一区| 91视频一区二区| 欧美精品色一区二区三区| 久久女同性恋中文字幕| 亚洲女性喷水在线观看一区| 石原莉奈在线亚洲三区| 国产传媒久久文化传媒| 欧洲精品一区二区| 精品少妇一区二区三区| 成人欧美一区二区三区黑人麻豆| 天天综合色天天综合| 国产99久久久国产精品免费看| 在线精品亚洲一区二区不卡| 精品久久免费看| 亚洲蜜臀av乱码久久精品| 捆绑变态av一区二区三区| 99久久久精品| 日韩欧美一二三| 亚洲三级免费观看| 久久疯狂做爰流白浆xx| 91麻豆国产在线观看| 日韩精品一区在线观看| 中文字幕字幕中文在线中不卡视频| 丝袜美腿亚洲综合| 成人av综合在线| 日韩视频一区二区在线观看| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆| 天堂蜜桃91精品| av一区二区三区四区| 欧美成人bangbros| 亚洲精品成a人| 国产精品一卡二卡在线观看| 欧美调教femdomvk| 欧美激情艳妇裸体舞| 日本视频在线一区| 色综合色综合色综合色综合色综合 | 奇米精品一区二区三区四区 | 欧美日韩在线免费视频| 国产精品三级电影| 免费在线观看精品| 色噜噜狠狠成人网p站| 久久久久久久久久久99999| 午夜视频在线观看一区| 99re6这里只有精品视频在线观看| 日韩欧美aaaaaa| 性久久久久久久久久久久| av午夜精品一区二区三区| 精品国产亚洲一区二区三区在线观看|