免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300

JC3509編程代做、代寫Python程序設(shè)計

時間:2024-03-31  來源:  作者: 我要糾錯



page 1 of 3
 University of Aberdeen
 South China Normal University
 Aberdeen Institute of Data Science
 & Artificial Intelligence.
 BSc in Artificial Intelligence 2023 – 2024
**Please read all the information below carefully**
Assessment I Briefing Document – Individually Assessed (no teamwork)
Course: JC3509 – Machine Learning Note: This part of assessment accounts for
30% of your total mark of the course.
Learning Outcomes
On successful completion of this component a student will have demonstrated competence in the
following areas:
• Ability to identify, prepare, & manage appropriate datasets for analysis.
• Ability to appropriately present the results of data analysis.
• Ability to analyse the results of data analyses, and to evaluate the performance of analytic
techniques in context.
• Knowledge and understanding of analytic techniques, and ability to appropriately apply
them in context, making correct judgements about how this needs to be done.
Information for Plagiarism and Conduct: Your submitted report may be submitted for
plagiarism check (e.g., Turnitin). Please refer to the slides available at MyAberdeen for more
information about avoiding plagiarism before you start working on the assessment. Please also read
the following information provided by the university: https://www.abdn.ac.uk/sls/onlineresources/avoiding-plagiarism/
In addition, please familiarise yourselves with the following document “code of practice on student
discipline (Academic)”: https://tinyurl.com/y92xgkq6
Report Guidance & Requirements
Your report must conform to the below structure and include the required content as outlined in each
section. Each subtask has its own marks allocated. You must supply a written report, along with the
corresponding code, containing all distinct sections/subtasks that provide a full critical and reflective
account of the processes undertaken.
Overview
This assignment tasks you to undertake the full machine learning pipeline, including data handling
and processing, model construction and training, and evaluation of the developed methods. You are
tasked to create a neural network to classify data into 3 categories.
page 2 of 3
**Please read all the information below carefully**
The dataset needed to fulfil the requirements of this assessment can be found in MyAberdeen.
Data:
This data contains the chemical properties of food product produced by 3 different manufacturers.
The purpose of this experiment is to explore the relationship between the chemical measures listed
below and the manufacturer of the food product. The data has 177 records, where the first column
“Producer” indicates which manufacturer produced the analyses sample. The features of the dataset
are the following:
• Producer – Manufacturer of the product (TARGET).
• Amino_acid – The total percentage content of animo acid.
• Malic_acid – The percentage content of malic acid.
• Ash – The measure of ash present in the product.
• Alc – The alcalinity of ash present.
• Mg – The measure of magnesium.
• Phenols – The total measure of phenols.
• Flavanoids – The measure of flavonoid phenols in the product.
• Nonflavanoid_phenols – The measure of non-flavonoid phenols in the product.
• Proanth – Proanthocyanins measure.
• Colo_int – The color intensity.
• Hue – Hue of the color.
• OD – The protein content of the product.
• Proline – The measure of proline amino acids.
Objectives:
The main purpose of employing this data is the following:
1. Classification: to determine the origin (manufacturer) of the product given analytical
measurements.
2. Analysis: to infer which analytical factors would potentially influence the classification of
the product.
In order to achieve these objectives, we would like to accomplish the following subtasks using
machine learning.
Submission
Please provide the follow:
1. A written report explaining the steps undertaken for each task, and the decisions behind each
choice. You are expected to use machine learning principles to explain your results with
graphs and/or tables.
2. A code submission, comprising of ONE commented python file with all code needed to
replicate the findings in the written report.
page 3 of 3
**Please read all the information below carefully**
Task 1 – Data Preparation (10 Marks)
Subtasks:
1. Import the dataset: Please provide a short description of the data provided and import the data
into your programming environment; provide snippets of code for these purposes.
2. Preprocess the data: If you did any preprocessing over the data, e.g., normalization, please
explain it and the reasons why you did that preprocessing; if you did not do any preprocessing,
also please explain.
Task 2 – Model Construction (50 Marks)
You are tasked to build simple fully connected artificial neural network from scratch to classify the
records into 3 categories (1, 2, or 3).
You are not permitted to use any machine learning or statistical libraries, you are expected to
construct the neural network from scratch, i.e. only using core Python and NumPy.
Subtasks:
1. Loss function: Select and implement an appropriate loss function, explain why you have
selected that loss function in relation to the data and the problem.
2. Network Design: Construct a fully connected neural network with at least one hidden layer.
Explain your architectural choice and demonstrate by code snippets, tests, and written
explanation that your code operates as expected. To achieve this, you will need to implement
both:
a. The Forward Pass.
b. The Backward Pass.
3. Gradient Descent: Update the weights by mini-batch stochastic gradient descent.
Demonstrate by code snippets, tests, and written explanation that the weights are being
updated. You can use advanced optimisation tricks if you wish i.e. momentum.
NOTE: If you are unable to complete the above tasks, you are permitted to use additional libraries
(i.e. PyTorch) however, this will result in a deduction of 20 marks.
Task 3 – Model Training (15 Marks)
Take the model from the previous task and train it on the data you pre-processed in Task 1. Ensure
that you train your model on a sub-set of the data, holding out a subset for validation.
Subtasks:
1. Model Training: Perform training and parameter selection on the training set.
2. Module Regularisation: Implement a regularisation method, briefly explain (Max 200 words)
how it works in the context of your code, use code snippets to help.
3. Model inference: Validate the model by performing inference on the held-out validation data.
page 4 of 3
**Please read all the information below carefully**
Task 4 – Evaluation (25 Marks)
Evaluate the performance of your trained classifier and employ machine learning principles to
explain your results with graphs and/or tables. In addition, perform some analyses on the trained
model to better understand which analytical factors would potentially influence the classification of
the product.
Subtasks:
1. Present Results: Present the results of your classifier via appropriate metrics for the problem
statement.
2. Plot: Plot the loss curve for training and validation, answer the following questions:
a. What does your loss curve tell you?
b. Are you observing any overfitting or underfitting?
c. Does the addition of regularisation help?
3. Explain Results: Explain the results from the previous subtasks in context of the problem
statement/setting.
Marking Criteria
• Depth and breadth of knowledge.
• Technical details of formalisation, implementation and pseudo-code.
• Communication skills (clear, technical contents and sound reasoning)
• Structure of document.
Submission Instructions
You should submit a PDF version of your report and the accompanying code to the Codio
environment. For the deadline of this assessment, please check it on MyAberdeen. The name of the
PDF file should have the form “JC3509_Assessment1 _< your Surname>_<your first
name>_<Your Student ID>”. For instance, “JC3509_Assessment1_Smith_John_4568985.pdf”,
where 4568985 is your student ID.
Any questions pertaining to any aspects of this assessment, please address them to the course
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp








 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:CHC5223代寫、Java/c++編程設(shè)計代做
  • 下一篇:代寫CSci 4061、c/c++,Java程序代做
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300
    高清国产一区二区三区| 欧美日韩一卡二卡三卡| 国产精品伦一区| 成人免费视频网站在线观看| 欧美激情资源网| av在线不卡网| 一区二区三区四区视频精品免费| 在线国产电影不卡| 午夜精品免费在线观看| 日韩一区二区三区免费看| 麻豆精品视频在线| 久久久不卡网国产精品二区| 大胆欧美人体老妇| 亚洲欧美日韩一区| 欧美精品自拍偷拍动漫精品| 麻豆视频一区二区| 久久久久久久精| 99久久精品一区二区| 亚洲国产精品久久人人爱| 91精品福利在线一区二区三区 | 国产高清亚洲一区| 国产精品久久网站| 欧美日韩一级视频| 国产揄拍国内精品对白| 亚洲欧美在线aaa| 欧美另类久久久品| 国产福利精品一区二区| 亚洲欧美一区二区三区孕妇| 欧美日本韩国一区| 国产激情一区二区三区| 一区二区在线观看免费| 日韩午夜激情免费电影| 成人午夜免费av| 午夜日韩在线电影| 久久久亚洲午夜电影| 色视频成人在线观看免| 美女视频网站久久| 综合激情网...| 欧美一级日韩免费不卡| 成人爱爱电影网址| 日精品一区二区三区| 国产欧美视频一区二区| 欧美日韩一本到| 国产尤物一区二区| 亚洲h动漫在线| 国产欧美日本一区二区三区| 欧洲一区在线电影| 国产精品一级片在线观看| 亚洲一区二区五区| 国产视频一区二区三区在线观看| 欧美视频在线不卡| 国产精品77777| 亚洲国产一区在线观看| 国产午夜精品久久久久久免费视 | 人人爽香蕉精品| 国产精品免费av| 欧美一区二区福利在线| 99久久99久久综合| 韩国av一区二区三区| 亚洲综合激情另类小说区| 国产欧美一区二区精品性色 | 99精品欧美一区二区三区小说| 日本不卡一区二区三区| 亚洲丝袜另类动漫二区| 精品少妇一区二区三区| 欧美图片一区二区三区| 福利电影一区二区三区| 美女精品一区二区| 伊人色综合久久天天人手人婷| 国产日韩欧美制服另类| 欧美一区二区三区视频在线| 色综合亚洲欧洲| 粉嫩蜜臀av国产精品网站| 久久精品国产**网站演员| 一区av在线播放| 国产精品伦一区| 久久久久久久久伊人| 日韩一区和二区| 欧美日韩综合不卡| 91在线丨porny丨国产| 国产成人在线电影| 久久99精品国产麻豆婷婷| 亚洲成av人影院| 亚洲精品成人a在线观看| 亚洲国产精品ⅴa在线观看| 2022国产精品视频| 日韩欧美一级在线播放| 欧美日韩大陆一区二区| 日本伦理一区二区| 91在线视频在线| 成人性生交大片免费看视频在线| 国产自产视频一区二区三区| 免费日本视频一区| 日韩不卡一区二区三区| 婷婷中文字幕综合| 亚洲国产va精品久久久不卡综合| 亚洲欧美精品午睡沙发| 国产精品第13页| 欧美激情一区二区三区在线| 久久久精品国产99久久精品芒果| 精品久久久久久亚洲综合网| 日韩一区二区免费在线观看| 欧美丰满一区二区免费视频| 欧美三级午夜理伦三级中视频| 色哟哟在线观看一区二区三区| 99视频有精品| eeuss影院一区二区三区| 成人开心网精品视频| 成人免费视频网站在线观看| 岛国一区二区三区| 成人a区在线观看| 本田岬高潮一区二区三区| 成人国产精品免费观看动漫| 成人自拍视频在线| av爱爱亚洲一区| 99精品视频免费在线观看| 94色蜜桃网一区二区三区| 一本一道波多野结衣一区二区| 色噜噜狠狠色综合中国| 在线中文字幕不卡| 欧美日韩国产欧美日美国产精品| 欧美日韩日日摸| 91精品久久久久久久91蜜桃 | 成人欧美一区二区三区小说| 1000部国产精品成人观看| 亚洲三级小视频| 亚洲一区二区三区四区不卡| 午夜在线电影亚洲一区| 奇米亚洲午夜久久精品| 激情综合五月天| 国产成人aaaa| 91热门视频在线观看| 欧美日韩一级黄| 日韩一区二区麻豆国产| 久久久三级国产网站| 国产精品亲子乱子伦xxxx裸| 亚洲欧美一区二区久久| 亚洲成人动漫在线观看| 麻豆91在线播放免费| 国产精品自拍三区| 97超碰欧美中文字幕| 精品视频一区三区九区| 日韩欧美一区二区在线视频| 久久精品人人爽人人爽| 国产精品电影院| 午夜精品成人在线视频| 精品亚洲porn| kk眼镜猥琐国模调教系列一区二区| 91美女片黄在线观看91美女| 欧美人伦禁忌dvd放荡欲情| 日韩欧美国产精品一区| 中文字幕 久热精品 视频在线| 亚洲欧美日韩久久| 日本不卡视频一二三区| 国产福利不卡视频| 色噜噜夜夜夜综合网| 日韩欧美亚洲国产精品字幕久久久 | 丝袜诱惑亚洲看片| 国产一区二区三区香蕉| 色综合天天综合狠狠| 91精品国产一区二区三区蜜臀 | 蜜乳av一区二区| 粉嫩高潮美女一区二区三区 | 欧美性感一区二区三区| 日韩精品一区二区三区中文不卡 | 精品国产伦一区二区三区观看体验| 亚洲国产精品ⅴa在线观看| 亚洲国产精品麻豆| 国产乱码精品一区二区三| 色视频欧美一区二区三区| 日韩欧美国产综合| 日韩码欧中文字| 日韩激情一二三区| jvid福利写真一区二区三区| 51精品国自产在线| 中文字幕中文在线不卡住| 男人的j进女人的j一区| jlzzjlzz欧美大全| 日韩女同互慰一区二区| 亚洲欧美自拍偷拍| 精品一区二区三区av| 91高清在线观看| 国产亚洲精品资源在线26u| 亚洲午夜电影在线观看| 国产99久久久国产精品潘金| 欧美日韩免费观看一区二区三区| 国产欧美一区二区三区鸳鸯浴 | 欧美日韩国产综合久久| 中文字幕第一区第二区| 男女男精品网站| 91在线国产观看| 26uuu色噜噜精品一区二区| 亚洲制服丝袜在线| 成人污视频在线观看| 欧美一区二区久久久| 一区二区激情视频| 成人av综合在线| 精品国产成人在线影院| 亚洲chinese男男1069| 92精品国产成人观看免费|