免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300

CISC3025代寫(xiě)、代做c++,Java程序設(shè)計(jì)

時(shí)間:2024-04-03  來(lái)源:  作者: 我要糾錯(cuò)



University of Macau
CISC3025 - Natural Language Processing
Project#3, 2023/2024
(Due date: 18th April)
Person Name ('Named Entity') Recognition
This is a group project with two students at most. You need to enroll in a group here. In this project,
you will be building a maximum entropy model (MEM) for identifying person names in newswire
texts (Label=PERSON or Label=O). We have provided all of the machinery for training and testing
your MEM, but we have left the feature set woefully inadequate. Your job is to modify the code
for generating features so that it produces a much more sensible, complete, and higher-performing
set of features.
NOTE: In this project, we expect you to design a web application for demonstrating your final
model. You need to design a web page that provides at least such a simple function: 1) User inputs
sentence; 2) Output the named entity recognition results. Of course, more functionalities in your
web application are highly encouraged. For example, you can integrate the previous project’s work,
i.e., text classification, into your project (It would be very cool!).
You NEED to submit:
• Runnable program
o You need to implement a Named Entity Recognition model based on the given starter
codes
• Model file
o Once you have finished the designing of your features and made it functions well, it
will dump a model file (‘model.pkl’) automatically. We will use it to evaluate
your model.
• Web application
o You also need to develop a web application (freestyle, no restriction on programming
languages) to demonstrate your NER model or even more NLP functions.
o Obviously, you need to learn how to call your python project when building the web
application.
• Report
o You should finish a report to introduce your work on this project. Your report should
contain the following content:
§ Introduction;
§ Description of the methods, implementation, and additional consideration to
optimize your model;
§ Evaluations and discussions about your findings;
2
§ Conclusion and future work suggestions.
• Presentation
o You need to give a 8-minute presentation in the class to introduce your work followed
by a 3-minute Q&A section. The content of the presentation may refer to the report.
Starter Code
In the starter code, we have provided you with three simple starter features, but you should be able
to improve substantially on them. We recommend experimenting with orthographic information,
gazetteers, and the surrounding words, and we also encourage you to think beyond these
suggestions.
The file you will be modifying is MEM.py
Adding Features to the Code
You will create the features for the word at the given position, with the given previous label. You
may condition on any word in the sequence (and its relative position), not just the current word
because they are all observed. You may not condition on any labels other than the previous one.
You need to give a unique name for each feature. The system will use this unique name in training
to set the weight for that feature. At the testing time, the system will use the name of this feature
and its weight to make a classification decision.
Types of features to include
Your features should not just be the words themselves. The features can represent any property of
the word, context, or additional knowledge.
For example, the case of a word is a good predictor for a person's name, so you might want to add
a feature to capture whether a given word was lowercase, Titlecase, CamelCase, ALLCAP, etc.
def features(self, words, previous_label, position):
 features = {}
 """ Baseline Features """
 current_word = words[position]
 features['has_(%s)' % current_word] = 1
 features['prev_label'] = previous_label
 if current_word[0].isupper():
 features['Titlecase'] = 1
 #===== TODO: Add your features here =======#
 #...
 #=============== TODO: Done ================#
 return features
3
Imagine you saw the word “Jenny”. In addition to the feature for the word itself (as above), you
could add a feature to indicate it was in Title case, like:
You might encounter an unknown word in the test set, but if you know it begins with a capital letter
then this might be evidence that helps with the correct prediction.
Choosing the correct features is an important part of natural language processing. It is as much art
as science: some trial and error is inevitable, but you should see your accuracy increasing as you
add new types of features.
The name of a feature is not different from an ID number. You can use assign any name for a
feature as long as it is unique. For example, you can use “case=Title” instead of “Titlecase”.
Running the Program
We have provided you with a training set and a development set. We will be running your programs
on an unseen test set, so you should try to make your features as general as possible. Your goal
should be to increase F1 on the dev set, which is the harmonic mean of the precision and the recall.
You can use three different command flags (‘-t’, ‘-d’, ‘-s’) to train, test, and show respectively.
These flags can be used independently or jointly. If you run the program as it is, you should see the
following training process:
Afterward, it can print out your score on the dev set.
You can also give it an additional flag, -s, and have it show verbose sample results. The first column
is the word, the last two columns are your program's prediction of the word’s probability to be
$ python run.py -d
Testing classifier...
f_score = 0.8715
accuracy = 0.9641
recall = 0.7143
precision = 0.9642
if current_word[0].isupper():
features['Titlecase'] = 1
$ cd NER
$ python run.py -t
Training classifier...
 ==> Training (5 iterations)
 Iteration Log-Likelihood Accuracy
 ---------------------------------------
 1 -0.69315 0.055
 2 -0.09383 0.946
 3 -0.08134 0.968
 4 -0.07136 0.969
 Final -0.06330 0.969
4
PERSON or O. The star ‘*’ indicates the gold result. This should help you do error analysis and
properly target your features.
Where to make your changes?
1. Function ‘features()’ in MEM.py
2. You can modify the “Customization” part in run.py in order to debug more efficiently and
properly. It should be noted that your final submitted model should be trained under at least 20
iterations.
3. You may need to add a function “predict_sentence( )” in class MEM( ) to output predictions
and integrate with your web applications.
Changes beyond these, if you choose to make any, should be done with caution.
Grading
The assignment will be graded based on your codes, reports, and most importantly final
presentation.
$ python run.py -s
 Words P(PERSON) P(O)
----------------------------------------
 EU 0.0544 *0.9456
 rejects 0.0286 *0.9714
 German 0.0544 *0.9456
 call 0.0286 *0.9714
 to 0.0284 *0.9716
 boycott 0.0286 *0.9714
 British 0.0544 *0.9456
 lamb 0.0286 *0.9714
 . 0.0281 *0.9719
 Peter *0.4059 0.5941
 Blackburn *0.5057 0.4943
 BRUSSELS 0.4977 *0.5023
 1996-08-22 0.0286 *0.9714
 The 0.0544 *0.9456
 European 0.0544 *0.9456
 Commission 0.0544 *0.9456
 said 0.0258 *0.9742
 on 0.0283 *0.9717
 Thursday 0.0544 *0.9456
 it 0.0286 *0.9714
#====== Customization ======
BETA = 0.5
MAX_ITER = 5 # max training iteration
BOUND = (0, 20) # the desired position bound of samples
#==========================
5
Tips
• Start early! This project may take longer than the previous assignments if you are aiming for
the perfect score.
• Generalize your features. For example, if you're adding the above "case=Title" feature, think
about whether there is any pattern that is not captured by the feature. Would the "case=Title"
feature capture "O'Gorman"?
• When you add a new feature, think about whether it would have a positive or negative weight
for PERSON and O tags (these are the only tags for this assignment).

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






















 

標(biāo)簽:

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:COMP3334代做、代寫(xiě)Python程序語(yǔ)言
  • 下一篇:代寫(xiě)CSC 330、代做C/C++編程語(yǔ)言
  • 無(wú)相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲(chóng)
    油炸竹蟲(chóng)
    酸筍煮魚(yú)(雞)
    酸筍煮魚(yú)(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚(yú)
    香茅草烤魚(yú)
    檸檬烤魚(yú)
    檸檬烤魚(yú)
    昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
    昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗(yàn)證碼平臺(tái) 理財(cái) WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300
    91官网在线观看| 色香蕉成人二区免费| 国产视频一区二区在线| 国产成人精品亚洲日本在线桃色| 久久在线免费观看| 国产91在线|亚洲| 国产精品亲子乱子伦xxxx裸| 91丨九色丨尤物| 亚洲一二三四在线| 欧美福利视频导航| 久久精品免费观看| 久久久.com| 91日韩一区二区三区| 亚洲一区二区不卡免费| 在线播放国产精品二区一二区四区| 日本中文字幕一区二区有限公司| 亚洲精品一区二区三区影院| 东方欧美亚洲色图在线| 一区二区三区欧美久久| 日韩三级电影网址| 高清成人免费视频| 亚洲最大色网站| 日韩精品一区二区三区四区| 国产成人自拍网| 亚洲精品videosex极品| 91精品国产欧美一区二区| 国产精品综合av一区二区国产馆| 国产精品国产三级国产普通话蜜臀| 日本高清视频一区二区| 免费视频一区二区| 国产精品久久久久久一区二区三区| 在线观看日韩国产| 九九在线精品视频| 日韩一区在线免费观看| 91精品国产欧美日韩| 岛国精品在线观看| 亚洲成人动漫一区| 国产偷国产偷亚洲高清人白洁| 色偷偷一区二区三区| 另类欧美日韩国产在线| 国产精品伦理一区二区| 51精品视频一区二区三区| 粉嫩在线一区二区三区视频| 亚洲午夜国产一区99re久久| 337p粉嫩大胆色噜噜噜噜亚洲 | 福利一区福利二区| 亚洲一区二区三区在线| 久久色在线观看| 欧洲精品一区二区| 国产一区二区三区国产| 亚洲一区在线观看视频| 久久久精品tv| 欧美精品精品一区| www.成人在线| 九九国产精品视频| 亚洲在线观看免费视频| 国产三级精品视频| 欧美一区欧美二区| 色综合一区二区三区| 韩国理伦片一区二区三区在线播放| 亚洲精品中文在线观看| 久久精品夜色噜噜亚洲aⅴ| 欧美日韩国产综合草草| 99免费精品视频| 精品亚洲国内自在自线福利| 亚洲一区av在线| 中文字幕中文字幕在线一区 | 欧美一三区三区四区免费在线看| 成人动漫av在线| 蜜臀av一级做a爰片久久| 亚洲蜜桃精久久久久久久| 久久久久久久久一| 日韩欧美在线不卡| 久久久久久久久久久久久久久99| 欧美日韩国产bt| 色综合久久99| 成人精品免费网站| 黄网站免费久久| 日本不卡一区二区| 亚洲午夜精品在线| 亚洲欧美一区二区久久| 国产日产欧美精品一区二区三区| 日韩小视频在线观看专区| 精品视频在线视频| 色爱区综合激月婷婷| 成人免费高清视频| 国产精品白丝av| 精品一区二区综合| 日本午夜精品视频在线观看| 亚洲精品中文在线影院| 国产精品白丝在线| 国产精品嫩草影院com| 久久久久成人黄色影片| 精品国产乱码久久久久久图片| 777色狠狠一区二区三区| 91精品国产aⅴ一区二区| 成人免费av网站| 国产成人午夜精品5599| 精品一区二区三区日韩| 美日韩一级片在线观看| 日韩精品国产欧美| 亚洲国产精品视频| 亚洲夂夂婷婷色拍ww47 | 亚洲一区二区三区四区五区黄 | 91免费小视频| 91免费看视频| 色网综合在线观看| 色哟哟欧美精品| 91国内精品野花午夜精品| 色哟哟一区二区| 日本丶国产丶欧美色综合| 色综合天天性综合| 色婷婷久久久综合中文字幕| 亚洲天堂中文字幕| 亚洲国产精品成人综合| 国产精品青草综合久久久久99| 国产日韩欧美在线一区| 中文子幕无线码一区tr| 国产精品欧美久久久久一区二区| 国产精品伦理一区二区| 1024成人网| 一级日本不卡的影视| 亚洲综合精品自拍| 午夜视频在线观看一区二区| 日韩中文字幕麻豆| 麻豆精品久久久| 国产美女一区二区| 亚洲国产一区二区三区青草影视| 亚洲美女视频在线| 亚洲精品免费在线| 亚洲成年人网站在线观看| 日韩av一二三| 国产中文一区二区三区| 豆国产96在线|亚洲| 91影院在线免费观看| 欧美亚洲另类激情小说| 91精品国产一区二区| 精品国产乱码久久久久久牛牛 | 国产午夜精品久久| ...av二区三区久久精品| 亚洲综合在线电影| 无吗不卡中文字幕| 国产中文字幕一区| a级精品国产片在线观看| 在线免费观看一区| 欧美一区二区三区在线观看| 久久久久久电影| 亚洲天堂av老司机| 日韩专区欧美专区| 激情综合色综合久久综合| 国产成人精品一区二区三区四区| 91视频你懂的| 91精品国产一区二区三区香蕉| 久久久久97国产精华液好用吗 | 国产精品丝袜在线| 亚洲一卡二卡三卡四卡| 久草热8精品视频在线观看| thepron国产精品| 5月丁香婷婷综合| 中文字幕+乱码+中文字幕一区| 一区二区三区欧美日| 久久成人麻豆午夜电影| 成人福利在线看| 56国语精品自产拍在线观看| 国产女人aaa级久久久级| 亚洲一区二区三区在线看| 国产一区 二区| 91精彩视频在线观看| 精品精品国产高清a毛片牛牛| 日韩理论片网站| 美女一区二区久久| 91丝袜高跟美女视频| 精品欧美乱码久久久久久1区2区| 中文字幕视频一区| 麻豆免费精品视频| 色综合天天综合在线视频| 欧美成人精品福利| 亚洲美女免费在线| 国产一区二区在线影院| 欧洲精品中文字幕| 国产日韩视频一区二区三区| 午夜欧美2019年伦理| 成人中文字幕电影| 欧美一级精品大片| 亚洲欧美另类久久久精品2019| 美女网站色91| 欧洲视频一区二区| 国产视频亚洲色图| 日本91福利区| 一本一本久久a久久精品综合麻豆 一本一道波多野结衣一区二区 | 日韩美一区二区三区| 久久综合九色综合97_久久久| 国产精品乱码一区二区三区软件| 三级欧美在线一区| 97精品国产97久久久久久久久久久久 | 欧美亚洲综合网| 欧美激情在线免费观看| 男人的天堂亚洲一区| 91成人在线观看喷潮| 中文字幕av一区二区三区高|