免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300

代寫COMP34212、代做Python/c++程序設計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300
    亚洲一区二区三区在线| 国产一区二区h| 91精品国产品国语在线不卡| 免费在线观看一区二区三区| 88在线观看91蜜桃国自产| 成人动漫av在线| 亚洲欧美日韩国产手机在线| 久久精品亚洲国产奇米99| 国产精品一区免费在线观看| 国产精品欧美一级免费| 91在线视频官网| 亚洲第一主播视频| 精品久久久久99| 成人av综合一区| 亚洲一二三区视频在线观看| 51精品国自产在线| 国产福利一区在线| 亚洲免费观看高清完整版在线观看熊| 欧美色爱综合网| 极品美女销魂一区二区三区| 国产精品久久久爽爽爽麻豆色哟哟| 色综合天天视频在线观看| 日韩国产欧美在线视频| 久久精品人人做人人爽人人| 91免费在线播放| 日韩精品成人一区二区在线| 久久久国产精品不卡| 91蝌蚪porny九色| 欧美aaa在线| 国产精品久久久久永久免费观看 | 91在线观看免费视频| 亚洲综合成人在线视频| 精品日韩在线观看| 91在线无精精品入口| 午夜电影一区二区三区| 一区二区三区日韩欧美| 亚洲第一二三四区| 欧美精品一区二区久久久| 91麻豆自制传媒国产之光| 日韩av高清在线观看| 国产精品久久久久影院老司| 欧美另类videos死尸| 国产精品亚洲第一区在线暖暖韩国| 亚洲精品乱码久久久久| 日韩美女视频在线| 一本久久综合亚洲鲁鲁五月天 | 精品一区二区三区在线观看 | 日韩一区欧美一区| 日韩三级av在线播放| 99在线精品视频| 麻豆成人久久精品二区三区红| 国产精品高潮呻吟久久| 日韩欧美国产成人一区二区| 99精品国产热久久91蜜凸| 精品一区二区久久| 亚洲一区二区成人在线观看| 国产欧美精品在线观看| 在线电影院国产精品| 91在线看国产| 国产精品99久久久久久久女警 | 风间由美一区二区av101| 午夜精品免费在线| 成人avav在线| 欧美在线观看一区| 日韩精品中文字幕一区二区三区 | 欧美大片在线观看一区二区| 91免费版pro下载短视频| 精品一区二区精品| 婷婷中文字幕综合| 亚洲日本青草视频在线怡红院| 久久综合一区二区| 在线播放欧美女士性生活| 91免费在线看| 国产91在线观看| 精品制服美女丁香| 日本成人在线不卡视频| 洋洋成人永久网站入口| 国产精品全国免费观看高清| 精品国产欧美一区二区| 在线电影院国产精品| 在线观看日韩一区| 色综合久久久久久久久久久| 国产激情视频一区二区三区欧美 | 国产不卡视频一区| 美女被吸乳得到大胸91| 婷婷一区二区三区| 亚洲国产精品久久久久婷婷884| 中文字幕一区二区三区不卡在线| 国产亚洲va综合人人澡精品| 日韩一区二区三区电影| 欧美日韩国产系列| 美女视频黄久久| 在线观看亚洲精品视频| 国产高清久久久久| 精品一区二区免费在线观看| 日韩av电影一区| 天天影视涩香欲综合网| 亚洲一区在线视频| 亚洲精品久久7777| 亚洲精品五月天| 亚洲天堂福利av| 亚洲人成在线播放网站岛国| 国产精品第13页| 国产精品久久久久久久久免费桃花| 国产午夜精品理论片a级大结局| 精品国产人成亚洲区| 欧美成人r级一区二区三区| 日韩视频免费观看高清在线视频| 91精品国产综合久久蜜臀| 欧美日韩卡一卡二| 欧美日韩色综合| 777午夜精品免费视频| 欧美巨大另类极品videosbest | 亚洲精品一区二区三区影院| 日韩女优制服丝袜电影| 欧美成人a∨高清免费观看| 日韩精品在线一区二区| 精品免费日韩av| 久久综合一区二区| 国产欧美综合色| 国产精品国产自产拍高清av| 亚洲婷婷综合久久一本伊一区| 亚洲欧美经典视频| 亚洲国产aⅴ天堂久久| 首页国产欧美久久| 麻豆一区二区三| 国产精品夜夜嗨| 不卡的av在线播放| 色美美综合视频| 欧美日韩国产另类不卡| 欧美一区二区播放| 国产亚洲制服色| 亚洲日本在线天堂| 天天综合日日夜夜精品| 久久精品国产一区二区三区免费看| 国产一区二区三区蝌蚪| 成+人+亚洲+综合天堂| 欧美亚洲一区二区在线| 欧美一区二区三区免费观看视频 | 亚洲欧洲性图库| 亚洲综合在线观看视频| 水野朝阳av一区二区三区| 久久精品久久99精品久久| 丁香婷婷深情五月亚洲| 色婷婷国产精品综合在线观看| 欧美日韩精品一区视频| 欧美成人bangbros| 国产精品美女久久久久aⅴ | 国产亚洲一区二区三区四区| 18成人在线观看| 日日欢夜夜爽一区| 国产成人午夜视频| 91精品福利在线| 欧美不卡视频一区| 日韩一区中文字幕| 日本成人在线看| 成人av免费网站| 欧美久久久一区| 日本一区二区成人| 婷婷国产v国产偷v亚洲高清| 狠狠色丁香久久婷婷综合丁香| 成人av网址在线| 91麻豆精品国产自产在线| 国产三级精品在线| 亚洲大片精品永久免费| 国产精品综合久久| 欧美亚洲尤物久久| 国产午夜精品一区二区三区视频| 亚洲一区影音先锋| 国产麻豆午夜三级精品| 欧美性色aⅴ视频一区日韩精品| 精品三级在线观看| 亚洲综合一区二区精品导航| 狠狠色狠狠色合久久伊人| 一本久久综合亚洲鲁鲁五月天 | 亚洲人亚洲人成电影网站色| 免费在线观看一区| 色综合一区二区三区| 三级影片在线观看欧美日韩一区二区 | 狠狠狠色丁香婷婷综合激情| 一本色道久久综合精品竹菊| 精品人伦一区二区色婷婷| 亚洲乱码国产乱码精品精的特点 | 日韩精品一区二区三区中文不卡 | 石原莉奈在线亚洲二区| gogogo免费视频观看亚洲一| 91精品蜜臀在线一区尤物| 国产精品久久久久久久久动漫| 青草国产精品久久久久久| 91麻豆.com| 久久久久99精品国产片| 日韩成人免费看| 色视频一区二区| 亚洲国产高清不卡| 青青草国产精品97视觉盛宴| 91福利区一区二区三区| 中文字幕精品在线不卡| 久久精品国产久精国产爱| 欧美专区日韩专区| 国产精品成人在线观看|