免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300

代做COCMP5328、代寫Python設(shè)計程序

時間:2024-05-07  來源:  作者: 我要糾錯



COCMP5328 - Advanced Machine Learning 
Assignment 1 
This assignment is to be completed in groups of 2 to 3 students. It is worth 25% of your 
total mark. 
1 Objective 
The objective of this assignment is to implement Non-negative Matrix Factorization 
(NMF) algorithms and analyze the robustness of NMF algorithms when the dataset is 
contaminated by large magnitude noise or corruption. More specifically, you should 
implement at least two NMF algorithms and compare their robustness. 
2 Instructions 
2.1 Dataset description 
In this assignment, you need to apply NMF algorithms on two real-world face image 
datasets: (1) ORL dataset
1; (2) Extended YaleB dataset
2

• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images per 
subject). For some subjects, the images were taken at different times, varying the 
lighting, facial expressions, and facial details (glasses / no glasses). All the images 
were taken against a dark homogeneous background with the subjects in an 
upright, frontal position. All images are cropped and resized to 92×112 pixels. 
• Extended YaleB dataset: it contains 2414 images of 38 subjects under 9 poses 
and 64 illumination conditions. All images are manually aligned, cropped, and 
then resized to 168×192 pixels. 
 
     1    https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html    
2    http://vision.ucsd.edu/    iskwak/ExtYaleDatabase/ExtYaleB.html    2    
Figure 1: An example face image and its occluded versions by b × b-blocks with b = 
10,12, and 14 pixels. 
Note: we provide a tutorial for this assignment, which contains example code for 
loading a dataset to numpy array. Please find more details in assignment1.ipynb. 
2.2 Assignment tasks 
1. You need to implement at least two Non-negative Matrix Factorization (NMF) 
algorithms: 
• You should implement at least two NMF algorithms with at least one not 
taught in this course (e.g., L1-Norm Based NMF, Hypersurface Cost Based 
NMF, L1-Norm Regularized Robust NMF, and L2,1-Norm Based NMF). 
• For each algorithm, you need to describe the definition of cost function as 
well as the optimization methods used in your implementation. 
2. You need to analyze the robustness of each algorithm on two datasets: 
• You are allowed to design your own data pre-processing method (if 
necessary). 
• You need to use a block-occlusion noise similar to those shown in Figure 1. 
The noise is generated by setting the pixel values to be 255 in the block. You 
should design your own value for b (not necessary to be 10,12 or 14). You 
are also encouraged to design your own noise other than the block-occlusion 
noise. 
• You need to demonstrate each type of noise used in your experiment (show 
the original image as well as the image contaminated by noise). 
• You should carefully choose the NMF algorithms and design experiment 
settings to clearly show the different robustness of the algorithms you have 
implemented. 
3. You are only allowed to use the python standard library, numpy and scipy (if 
necessary) to implement NMF algorithms. 3    
2.3 Programming and External Libraries Python
This assignment is required to be finished by 3. When you implement NMF 
algorithms, you are not allowed to use external libraries which contains NMF 
implementations, such as scikit-learn, and Nimfa (i.e., you have to implement the NMF 
algorithms by yourself). You are allowed to use scikit-learn for evaluation only (please 
find more details in assignment1.ipynb). If you have any ambiguity whether you can 
use a particular library or a function, please post on canvas under the Assignment 1 
thread. 
2.4 Evaluate metrics 
To compare the performance and robustness of different NMF algorithms, we provide 
three evaluation metrics: (1) Root Means Square Errors; (2) Average Accuracy; (3) 
Normalized Mutual Information. For all experiments, you need to use at least two 
metrics, i.e., Root Means Square Errors and Average Accuracy. 
• Root Means Square Errors (RMSE): let X denote the contaminated dataset (by 
adding noise), and      ̂ denote the clean dataset. Let   and   denote the 
factorization results on      ̂ , the Root Means Square Errors then can be defined 
as follows: 
(1) 
• Average Accuracy: You need to perform some clustering algorithms (i.e., Kmeans)
with num clusters equal to num classes. Each example is assigned with 
the cluster label (please find more details in assignment1.ipynb). Lastly, you can 
evaluate the accuracy of predictions Ypred as follows: 
 (3) 
where I(·,·) is mutual information and H(·) is entropy. 
Note: we expect you to have a rigorous performance evaluation. To provide an estimate 
of the performance of the algorithms in the report, you can repeat multiple times (e.g., 
5 times) for each experiment by randomly sampling 90% data from the whole dataset 
and average the metrics on different subset. You are also required to report the standard 
deviations. 4    
3 Report 
The report should be organized like research papers, and should contain the following 
sections: 
• In abstract, you should briefly introduce the topic of this assignment and describe 
the organization of your report. 
• In introduction, you should first introduce the main idea of NMF as well as its 
applications. You should then give an overview of the methods you want to use. 
• In related work, you are expected to review the main idea of related NMF 
algorithms (including their advantages and disadvantages). 
• In methods, you should describe the details of your method (including the 
definition of cost functions as well as optimization steps). You should also 
describe your choices of noise and you are encouraged to explain the robustness 
of each algorithm from theoretical view. 
• In experiment, firstly, you should introduce the experimental setup (e.g., datasets, 
algorithms, and noise used in your experiment for comparison). 
Second, you should show the experimental results and give some comments. 
• In conclusion, you should summarize your results and discuss your insights for 
future work. 
• In reference, you should list all references cited in your report and formatted all 
references in a consistent way. 
The layout of the report: 
• Font: Times New Roman; Title: font size 14; Body: font size 12 
• Length: Ideally 10 to 15 pages - maximum 20 pages 
Note: You are encouraged to use LaTeX. Optionally, a MS-Word template is provided. 
4 Submissions 
The submission contains two parts: source code and report. Detailed instructions are 
as follows: 
1. Go to Canvas and upload the following files. 5    
1. report (a pdf file): the report should include each member’s details 
(student id and name). 
2. code (a folder) as zip file 
i. algorithm (a sub-folder): your code could be multiple files inside 
algorithm sub-folder. 
ii. data (an empty sub-folder): although two datasets should be inside the 
data folder, please do not include them in the zip file. We will copy two 
datasets to the data folder when we test the code. 
2. Only one student needs to submit the report as pdf file and code as zip file which 
must be named as student ID numbers of all group members separated by 
underscores. 
E.g., “xxxxx_xxxxx_xxxxx_code.zip and xxxxx_xxxxx_xxxxx_report.pdf”. 
3. Your submission should include the report and the code. A plagiarism checker 
will be used. 
4. You need to clearly provide instructions on how to run your code in the appendix 
of the report. 
5. Indicate the contribution of each group member. 
6. A penalty of minus 1.25 (5%) marks per each day after due (email late 
submissions to TA and confirm late submission dates with TA). Maximum delay 
is 5 days, Assignments more than 5 days late will get 0. 
 
5 Plagiarism 
• Please read the University Policy on Academic Honesty carefully: 
http://sydney.edu.au/elearning/student/EI/academic_honesty.shtml 
• All cases of academic dishonesty and plagiarism will be investigated. 
• There is a new process and a centralised University system and database. 
• Three types of offences: 
1. Plagiarism – When you copy from another student, website or other 
source. This includes copying the whole assignment or only a part of it. 
2. Academic Dishonesty – When you make your work available to another 
student to copy (the whole assignment or a part of it). There are other 
examples of academic dishonesty. 6    
3. Misconduct - When you engage another person to complete your 
assignment (or a part of it), for payment or not. This is a very serious 
matter, and the Policy requires that your case is forwarded to the 
University Registrar for investigation. 
• The penalties are severe and include: 
1. A permanent record of academic dishonesty, plagiarism, and misconduct 
in the University database and on your student file. 
2. Mark deduction, ranging from 0 for the assignment to Fail for the course. 
3. Expulsion from the University and cancelling of your student visa. 
• When there is copying between students, note that both students are penalised – 
the student who copies and the student who makes his/her work available for 
copying. 
• It is noted that only 30% (including references) is acceptable. The high 
plagiarism will be reported to the school. 
 
 7    
6 Marking scheme 
Category Criterion Marks Comments 
Report [20] Abstract [0.75] 
•Problem, methods, organization. 
Introduction [1.25] 
•What is the problem you intend to solve? 
•Why is this problem important? 
Previous work [1.5] 
•Previous relevant methods used in literature? 
Methods [6.25] 
•Pre-processing (if any) •NMF 
Algorithm’s formulation. 
•Noise choice and description. 
Experiments and Discussions [6.25] 
•Experiments, comparisons, and evaluation 
•Extensive analysis and discussion of results 
•Relevant personal reflection 
Conclusions and Future work [0.75] 
•Meaningful conclusions based on results 
•Meaningful future work suggested 
Presentation [1.25] 
•Grammatical sentences, no spelling mistakes 
•Good structure and layout, consistent 
formatting 
•Appropriate citation and referencing 
•Use graphs and tables to summarize data 
Other [2] 
•At the discretion of the marker: for impressing 
the marker, excelling expectation, etc. 
Examples include clear presentation, welldesigned
experiment, fast code, etc. 
 8    
Code [5] 
•Code runs within a feasible time 
•Well organized, commented and documented 
 
Penalties [−] 
•Badly written code: [−5] 
•Not including instructions on how to run your 
code: [−5] 
 
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero). 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp























 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫COMP4403、代做Java編程語言
  • 下一篇:COMP1212代寫、代做Java/c++程序設(shè)計
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300
    在线播放欧美女士性生活| 日韩欧美国产成人一区二区| 一区二区在线免费观看| 色狠狠桃花综合| 一区二区欧美视频| 欧美视频一区在线| 日韩av不卡在线观看| 日韩精品一区二区三区在线观看| 久久69国产一区二区蜜臀| 精品国产髙清在线看国产毛片| 国产伦精品一区二区三区免费| 国产丝袜欧美中文另类| 99精品视频在线播放观看| 亚洲精品免费播放| 3atv在线一区二区三区| 精品一区二区av| 国产精品日韩精品欧美在线 | 日韩av高清在线观看| 精品国产电影一区二区| 成人激情免费视频| 亚洲一区二区三区四区在线 | 欧美成人官网二区| 成人精品视频一区二区三区| 自拍偷拍国产精品| 3751色影院一区二区三区| 国产呦精品一区二区三区网站| 综合亚洲深深色噜噜狠狠网站| 欧美日韩在线精品一区二区三区激情 | 国产亚洲精品7777| 91论坛在线播放| 热久久久久久久| 中文一区一区三区高中清不卡| 欧美中文字幕久久| 久久99久久久久久久久久久| 国产精品网站在线| 欧美男男青年gay1069videost| 国产一区久久久| 亚洲欧美国产77777| 欧美一级生活片| 不卡一区在线观看| 青青草国产精品亚洲专区无| 国产精品久久三| 91精品国模一区二区三区| 成人午夜视频免费看| 三级久久三级久久| 中文字幕亚洲一区二区av在线| 91精品国产综合久久久久久漫画| 成人免费高清视频在线观看| 亚洲国产精品人人做人人爽| 久久久91精品国产一区二区精品| 欧美天天综合网| 成人午夜免费av| 蜜臀av一区二区| 一区二区在线电影| 久久久国产综合精品女国产盗摄| 欧美亚洲动漫制服丝袜| 国产精品888| 天天色 色综合| 国产精品传媒入口麻豆| 日韩女优电影在线观看| 色婷婷亚洲综合| 国产成人免费在线观看不卡| 亚洲成国产人片在线观看| 国产精品少妇自拍| 亚洲午夜久久久久| 国产精品日韩成人| 精品91自产拍在线观看一区| 日本韩国欧美国产| 高清久久久久久| 另类调教123区| 一区二区三区国产| 国产精品日韩成人| 欧美精品一区二区三区蜜臀| 欧美日韩夫妻久久| 91小视频免费看| 高清久久久久久| 久久丁香综合五月国产三级网站| 亚洲国产欧美在线| 亚洲欧洲色图综合| 国产亚洲一区二区三区四区| 欧美一个色资源| 欧美视频三区在线播放| 91在线观看成人| 国产91在线观看丝袜| 韩国av一区二区三区四区| 爽好久久久欧美精品| 亚洲精品菠萝久久久久久久| 国产精品伦一区| 久久九九久精品国产免费直播| 欧美一二三四区在线| 欧美日韩国产精品成人| 日本韩国欧美国产| 色综合久久66| 91色在线porny| 99精品视频在线免费观看| 丁香亚洲综合激情啪啪综合| 国产乱码精品1区2区3区| 精品中文字幕一区二区| 奇米色777欧美一区二区| 亚洲国产精品人人做人人爽| 亚洲精品欧美激情| 亚洲男同1069视频| 亚洲女性喷水在线观看一区| 国产精品欧美一区喷水| 中文字幕不卡三区| 欧美国产一区视频在线观看| 国产亚洲成aⅴ人片在线观看| 久久久亚洲午夜电影| 精品国产123| 精品88久久久久88久久久| 精品国产91乱码一区二区三区 | 欧美成人福利视频| 日韩美一区二区三区| 日韩欧美一卡二卡| 精品欧美乱码久久久久久| 国产伦精品一区二区三区免费| 精品亚洲aⅴ乱码一区二区三区| 久久国内精品视频| 国产一区二区三区不卡在线观看| 国产在线乱码一区二区三区| 国产一区日韩二区欧美三区| 国产盗摄女厕一区二区三区| 国产成a人无v码亚洲福利| av在线不卡网| 色视频欧美一区二区三区| 一本色道久久综合亚洲aⅴ蜜桃 | 天堂成人国产精品一区| 日韩精品乱码av一区二区| 美美哒免费高清在线观看视频一区二区 | 精品一区二区三区在线观看国产| 国产一区二区三区在线看麻豆| 国产精品中文欧美| 成人a级免费电影| 色综合天天综合| 欧美日免费三级在线| 欧美一区二区三区小说| 欧美精品一区二区三区一线天视频| 久久精品人人做| 亚洲欧美日韩久久精品| 亚洲亚洲精品在线观看| 免费国产亚洲视频| 国产成人av一区二区| 91片在线免费观看| 欧美乱妇一区二区三区不卡视频| 欧美一区二区精美| 国产婷婷一区二区| 亚洲女性喷水在线观看一区| 天天综合天天综合色| 国产麻豆视频精品| 91污片在线观看| 91精品在线免费| 欧美国产激情二区三区| 一区二区三区不卡视频| 麻豆国产欧美日韩综合精品二区 | 欧美夫妻性生活| 久久亚洲一区二区三区四区| 一区精品在线播放| 丝瓜av网站精品一区二区| 国产一区二区电影| 一本一道波多野结衣一区二区| 91麻豆精品国产91久久久资源速度 | 亚洲一区在线观看网站| 久久99热这里只有精品| 不卡av电影在线播放| 欧美二区三区的天堂| 欧美极品aⅴ影院| 香蕉久久一区二区不卡无毒影院 | 日本一区二区免费在线观看视频| 曰韩精品一区二区| 韩国一区二区三区| 色婷婷综合久久久久中文| 欧美成人a视频| 亚洲免费观看高清完整版在线 | 久久免费看少妇高潮| 亚洲综合精品自拍| 国产精一品亚洲二区在线视频| 在线视频国产一区| 久久久久久久久99精品| 亚洲综合成人网| 国产成人精品aa毛片| 777午夜精品视频在线播放| 欧美国产精品久久| 免费观看在线色综合| 91麻豆国产自产在线观看| 精品国产网站在线观看| 夜夜夜精品看看| 国产不卡视频在线播放| 欧美精品粉嫩高潮一区二区| 国产精品每日更新| 久久66热偷产精品| 欧美三电影在线| 国产精品久线在线观看| 麻豆成人久久精品二区三区红 | av中文字幕亚洲| 欧美v国产在线一区二区三区| 亚洲精品乱码久久久久| 国产麻豆9l精品三级站| 91精品国产综合久久久久| 亚洲精品日日夜夜| 成人精品在线视频观看|